
Sch́ımatos: a SHACL-based Web-Form
Generator for Knowledge Graph Editing

Jesse Wright1[0000−0002−5771−988X], Sergio J. Rodŕıguez
Méndez1[0000−0001−7203−8399], Armin Haller1[0000−0003−3425−0780], Kerry
Taylor1[0000−0003−2447−1088], and Pouya G. Omran1[0000−0002−4473−3877]

Australian National University, Canberra ACT 2601, AU
{firstname.lastname}@anu.edu.au

https://cecs.anu.edu.au/

Abstract. Knowledge graph creation and maintenance is difficult for
näıve users. One barrier is the paucity of user friendly publishing tools
that separate schema modeling from instance data creation. The Shapes
Constraint Language (SHACL) [12], a W3C standard for validating RDF
based knowledge graphs, can help. SHACL enables domain relevant struc-
ture, expressed as a set of shapes, to constrain knowledge graphs. This
paper introduces Sch́ımatos, a form based Web application with which
users can create and edit RDF data constrained and validated by shapes.
Forms themselves are generated from, and stored as, shapes. In addition,
Sch́ımatos, can be used to edit shapes, and hence forms. Thus, Sch́ımatos
enables end-users to create and edit complex graphs abstracted in an
easy-to-use custom graphical user interface with validation procedures
to mitigate the risk of errors. This paper presents the architecture of
Sch́ımatos, defines the algorithm that builds Web forms from shape
graphs, and details the workflows for SHACL creation and data-entry.
Sch́ımatos is illustrated by application to Wikidata.

Keywords: Knowledge Graph · SHACL · MVC-based Web-Form Gen-
erator · RDF Editing Tool · Linked Data Platform

1 Introduction

The rapid growth of Knowledge Graphs (KGs) impels the Semantic Web vi-
sion [6] of a ubiquitous network of machine readable resources. Popular KGs
include the community-driven Wikidata [29], and Google’s KG [15] which is
largely populated through schema.org annotations on websites. An enduring
barrier to the development of the machine-readable Web, however, is the lack of
tools for authoring semantic annotations [14, 3]. While ontology editors such as
Protégé [16] and Diagrammatic Ontology Patterns [24] are favoured when creat-
ing quality assured (TBox) axioms, their primary purpose is to build and validate
the model: the schema of an ontology. While some of these editors can also create
instances, that is, individuals assigned to classes and data values with property
relations (ABox), the process is cumbersome and requires detailed knowledge of

2 Wright et al.

the RDF(S) and OWL languages. There is limited support to guide users to the
correct classes to which an entity can belong and the permissible relationships
between entities. Further, as ontology editors do not clearly distinguish schema
editing from data editing, data editing users may inadvertently alter the schema.

To address this, some Web publishing tools on top of wikis, microblogs or
content management systems have been developed that allow a user to create
semantic annotations, that is, instance assertions (e.g. the work discussed in [28,
13, 8, 17, 4]). This work has, for example, been incorporated into the semantic
MediaWiki software [28] on which Wikidata is based [29]. However, even within
this software, and so in Wikidata, there is limited user support for instance as-
sertions, mostly through text auto-completion. Consequently, in order to add
instances, users must have a strong understanding of the RDF data model, un-
derlying semantics of the Wikidata ontology, and the typical structure of other
instances of the same class.

The Shapes Constraint Language (SHACL) [12] is a recent W3C recom-
mendation developed to express conditions, as shape graphs, for validating RDF
based KGs. Thus domain relevant structure can be enforced. For example, Wiki-
data is an early adopter of shape graphs to define constraints on classes [25].
While Wikidata has chosen to use ShEx [20] to express these constraints1,
Sch́ımatos uses the SHACL standard.

At the time of writing, 218 schemas exist under the Wikidata schema en-
tity prefix, but none are enforced within the graph. For instance, the shape
available at https://www.wikidata.org/wiki/EntitySchema:E10 [31] defines
constraints on entities of type Human, but instances of this type (e.g. http:
//www.wikidata.org/entity/Q88056610 - Sergio José Rodŕıguez Méndez) are
not validated against this shape. Moreover, the authoring tool underlying Wiki-
data does not use these shapes to guide the user when creating similar enti-
ties [25]. However, shapes could be used in authoring tools to guide semantic
annotations.

This paper proposes Sch́ımatos, a SHACL-based Web-Form Generator for
Knowledge Graph Editing. Beyond its primary purpose of enabling näıve users
to create and edit instance assertions, it also provides means to create and edit
shapes. The software is being developed in the Australian Government Records
Interoperability Framework (AGRIF) project and has been applied to basic use
cases within several Australian Government departments. As these use cases are
confidential, the authors cannot report on the knowledge graphs maintained in
these cases, so we demonstrate a possible application of Sch́ımatos on Wikidata.

The remainder of this paper is structured as follows. First, related systems
are presented in section 2. Section 3 describes a motivating use case for this work
using an example entity from Wikidata. Then, Sch́ımatos and its architecture are
presented in section 4, followed by the form display logic in section 5. Section 6
defines formally the execution behaviour of the system with respect to the data
entry and the shape creation process. The paper concludes in section 7 with an
outlook on the schedule for future work.

1 See https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas

Sch́ımatos: a SHACL-based Web-Form Generator... 3

2 Related Work

Many mature ontology editors such as Protégé [16], the Neon toolkit [9] or the
commercial TopBraid Composer2, offer ways to create entities based on one or
more ontologies. Some of these editors have a Web-based version that can allow
ordinary Web users to hand craft ontology instances. However, users must be
able to recognise and correctly encode the expected property relationships for
each new class instance according to RDF(S)/OWL semantics.

Web-publishing tools on top of wikis, microblogs or content management
systems [28, 13, 8, 17, 4] allow näıve users to create semantic annotations, that
is, instance assertions. However, the user interface of these tools is either fixed
to a particular ontology or it has to be manually created based on the desired
mapping to a TBox schema.

ActiveRaUL [10, 11, 7] is closest in functionality to Sch́ımatos. It allows the
automatic rendering3 of Web-forms from arbitrary ontologies. The resulting
forms can then be used to create instances compliant to the original ontology.
The forms themselves become instances of a UI ontology, called RaUL. The
major difference to Sch́ımatos is that ActiveRaUL predated the introduction of
SHACL and, as such, the resulting forms are generated by interpreting ontol-
ogy assertions as rules. Sch́ımatos is using SHACL shapes and therefore does
not need to violate the Open World assumption of an underlying ontology, but
truthfully renders a form, based on the constraints expressed.

ShEx-form [19] is a recent tool that creates forms from a shape graph. It
appears to be inspired by Tim Berners-Lee’s draft article, Linked Data Shapes,
Forms and Footprints [26], which proposes the joint use of Shape Languages,
Form Languages (such as the User Interface Ontology [5]), and Footprint Lan-
guages which describe where the data from a form is to be stored. To the best of
our knowledge, this tool does not enable users to interact directly with external
KGs and also does not perform any validation of user input. Furthermore, some
features may not suit users unfamiliar with RDF concepts; requiring that they
interact directly with the underlying shape serialization in order to generate a
form.

3 Motivating Example

Within Wikidata [29] there are many instances of the class Human, most of which
have missing attributes that are required according to the Wikidata Human
shape. Of the existing instances of type human, there are only 8,117,2934 entities
which constitute about 0.103% of the current world population [27, Figure A.1.]
and 0.007% [18, Table 2] of the total population over time. Whilst there have

2 See https://www.topquadrant.com/products/topbraid-composer/
3 The term ‘rendering’ is used to refer to the generation of a Document Object Model

(DOM). This is the same terminology used in the ReactJS framework.
4 As of 2020-08-19 using the SPARQL query SELECT (COUNT(?item) AS ?count)

WHERE {?item wdt:P31 wd:Q5}

4 Wright et al.

been attempts to scrape data on existing entities [32], much of the information
is either not available online, or not in a machine-readable format. Thus, to
effectively complete instances of the class Human, widely-accessible tools that
enforce logical constraints on the class (i.e. Human in this case) are required,
whilst also prompting users to enter requisite data for the system. An example is
the entity wd:Q880566105 which appears to have been automatically generated
from the ORCID of the researcher [32]. Currently, no other information about
this entity is available on Wikidata.

This paper uses the shape graph for Human [31] as a running example, and
shows how Sch́ımatos can be used to enforce constraints on instances of this
class. Specifically, the paper demonstrates how the tool can be used to fill out
missing information; including gender, birthplace and date of birth; for the entity
wd:Q880566106.

4 The Sch́ımatos System

Sch́ımatos is an application that automatically generates Web-forms from SHACL
shapes. Data from completed forms, including the class and datatype annota-
tions of inputs, can be submitted to a KG over a SPARQL endpoint registered
with Sch́ımatos. Web-forms may also be edited within the tool and their SHACL
definition updated via SPARQL updates. All operations occur in the client so
the tool can be packaged as a stand-alone desktop application or served from a
website.

Sch́ımatos is built in the ReactJS Framework7 which compiles to W3C com-
pliant HTML+CSS/JavaScript with cross-browser compatibility. All SPARQL
requests are compliant with the LDP standard [23], so that it can read/write
data in SPARQL compliant triplestores. The tool also accepts data in the pro-
posed SPARQL 1.1 Subscribe Language [1] so as to receive live updates from
SEPA clients [2].

Sch́ımatos is available to download as an HTML+CSS/JavaScript package8

and it can also be run online9. Both of these resources work by default with
a local instance of Wikidata and re-use existing ShEx files [30] translated to
SHACL files for Sch́ımatos. Consider the entity wd:Q88056610, which appears
to have been automatically generated from the ORCID of the researcher [32].
Currently, no other information about this entity is available on Wikidata. One
can apply the SHACL-translated Human constraint [31] to this entity in order
to create a form that prompts users to fill out the missing information including
gender, birthplace and date of birth. Many additional examples are available

5 This is the identifier for researcher Dr. Sergio José Rodŕıguez Méndez.
6 The repo for Sch́ımatos at http://schimatos.github.io includes a translation of

the Human ShEx shape into a SHACL shape which can be obtained by automated
means with tools such as RDFShape [21].

7 See http://reactjs.org
8 http://schimatos.org
9 http://schimatos.github.io

Sch́ımatos: a SHACL-based Web-Form Generator... 5

@prefix ex: <http://example.com/ns#> .

@prefix sh: <http://www.w3.org/ns/SHACL#> .

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

@prefix tp: <http://www.shacl.kg/types/> .

ex:humanWikidataShape

a sh:NodeShape ;

sh:targetClass wd:Q5 ;

rdfs:label "human shape" ;

sh:property [

sh:path wdt:P21 ;

sh:name "gender" ;

sh:in (

wd:Q6581097 # male

wd:Q6581072 # female

wd:Q1097630 # intersex

wd:Q1052281 # transgender female (MTF)

wd:Q2449503 # transgender male (FTM)

wd:Q48270 # non-binary

);

sh:maxCount 1 ;

] ;

sh:property [

sh:path wdt:P19 ;

sh:name "place of birth" ;

sh:maxCount 1 ;

sh:property [

sh:path wdt:P17 ;

sh:name "country" ;

sh:maxCount 1 ;

] ;

] ;

sh:property [

sh:path wdt:P569 ;

sh:name "date of birth" ;

sh:maxCount 1 ;

sh:pattern "^[0-9]{2}\/[0-9]{2}\/[0-9]{4}$" ;

] ;

sh:property [

sh:path wdt:P735 ;

sh:name "given name" ;

sh:minCount 0 ;

sh:datatype tp:name

] ;

sh:property [

sh:path wdt:P734;

sh:name "family name" ;

sh:minCount 0 ;

] ;

sh:property [

sh:path wdt:P106;

sh:name "occupation" ;

sh:minCount 0 ;

] ;

sh:property [

sh:path wdt:P27;

sh:name "country of citizenship" ;

sh:minCount 0 ;

] ;

sh:property [

sh:path wdt:P22 ;

sh:name "father" ;

sh:minCount 0 ;

sh:class wd:Q5 ;

sh:node ex:humanWikidataShape ;

] ;

sh:property [

sh:path wdt:P25 ;

sh:name "mother" ;

sh:minCount 0 ;

sh:class wd:Q5 ;

sh:node ex:humanWikidataShape ;

] ;

sh:property [

sh:path wdt:P3373 ;

sh:name "sibling" ;

sh:minCount 0 ;

sh:class wd:Q5 ;

sh:node ex:humanWikidataShape ;

] ;

sh:property [

sh:path wdt:P26 ;

sh:name "husband|wife" ;

sh:minCount 0 ;

sh:node ex:humanWikidataShape ;

] ;

sh:property [

sh:path wdt:P40;

sh:name "children" ;

sh:minCount 0 ;

sh:class wd:Q5 ;

] ;

sh:property [

sh:path [

sh:alternativePath (

wdt:P1038 [# relatives

sh:oneOrMorePath [

sh:alternativePath (

wdt:P22

wdt:P25

wdt:P3373

wdt:P26

)

] ;

] ;

)

] ;

sh:name "relatives" ;

sh:minCount 0 ;

sh:class wd:Q5 ;

sh:node ex:humanWikidataShape ;

] ;

sh:property [

sh:path wdt:P103 ;

sh:name "native language" ;

sh:minCount 0 ;

] ;

sh:property [

sh:path wdt:P1412 ;

sh:name "written/spoken language(s)"

sh:minCount 0 ;

] ;

sh:property [

sh:path wdt:P6886 ;

sh:name "publishing language(s)" ;

sh:minCount 0 ;

] .

Fig. 1: A SHACL shape for the class of human (wd:Q5) entities described in the
Wikidata ontology.

as translations of the pre-defined ShEx constraints publicly available on the
Wikidata platform10.

4.1 Architecture

At its core, Sch́ımatos’ design follows the Model-View-Controller (MVC) pat-
tern [22] as depicted in Figure 2.

Model The model layer consists of three logical named graphs11: (1) SHACL
store (shapes), (2) Type store12, and (3) the KG (data). The SHACL store is a
repository of shapes which, when loaded, are translated to form structures by the

10 See https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas
11 There is no requirement that these graphs share the same SPARQL endpoint or

host.
12 The current namespace prefix for this graph is http://www.shacl.kg/types/ (tp:)

6 Wright et al.

ControllerController

ViewView

Model

SHACL/Data Queries

{...}

{...}

{...}

API{...}

{...}

{...}

API

Triplestore
SHACL-repo0

SHACL-repo1

…
SHACL-repoj

{...}

{...}

{...}

API

Triplestore
SHACL-repo0

SHACL-repo1

…
SHACL-repoj

Sidebar Management

Navigation
Bar

Navigation
Bar

SHACL
Selection

SHACL
Selection

Target
Selection

Target
Selection

Navigation
Bar

SHACL
Selection

Target
Selection

Sidebar Management

Navigation
Bar

SHACL
Selection

Target
Selection

{...}

{...}

{...}

API

{...}

{...}

{...}

API

Triplestore
KG0

KG1

…
KGi

{...}

{...}

{...}

API

Triplestore
KG0

KG1

…
KGi

Form Display

Property
Display

Property
Display

Target
Display
Target
Display

Field
Generator

Field
Generator

Group
Display
Group
Display

Property
Display

Target
Display

Field
Generator

Group
Display

Form Display

Property
Display

Target
Display

Field
Generator

Group
Display

Input Mappings

Field
Component

Field
Component

Path
Selector

Path
Selector

Field
Component

Path
Selector

Input Mappings

Field
Component

Path
Selector

Context Management

Form
Context

Form
Context

Configuration
Context

Configuration
Context

Storage
Context
Storage
Context

History
Context
History
Context

Form
Context

Configuration
Context

Storage
Context

History
Context

Context Management

Form
Context

Configuration
Context

Storage
Context

History
Context

Primary Menu

SettingsSettings

Sidebar
(open)
Sidebar
(open)

Settings

Sidebar
(open)

Primary Menu

Settings

Sidebar
(open)

Form Menu End-UserEnd-User

Controller

View

Model

SHACL/Data Queries

{...}

{...}

{...}

API

Triplestore
SHACL-repo0

SHACL-repo1

…
SHACL-repoj

Sidebar Management

Navigation
Bar

SHACL
Selection

Target
Selection

{...}

{...}

{...}

API

Triplestore
KG0

KG1

…
KGi

Form Display

Property
Display

Target
Display

Field
Generator

Group
Display

Input Mappings

Field
Component

Path
Selector

Context Management

Form
Context

Configuration
Context

Storage
Context

History
Context

Primary Menu

Settings

Sidebar
(open)

Form Menu End-User

Fig. 2: Model-View-Controller software architectural design pattern for
Sch́ımatos

View. The Type store contains constraints for custom class and datatype defini-
tions, such as regular expressions that all literals of a given datatype must match.
Examples include: phone numbers, email addresses, and social security numbers.
These definitions provide validation constraints for any sh:PropertyShape with
a defined class or datatype. The KG, of course, has the data, which is used to
pre-fill the form and is updated whenever a user submits new data.

Sch́ımatos interacts with the model via RESTful API requests. In the current
version of the tool, these requests are SPARQL queries and commands made over
the SPARQL endpoint of the relevant triplestores.

View One of the main parts of the view layer in Figure 2 is the Form Display
module; which has the components that handle the Web-Form generation from
the SHACL structures. This module is explained in detail in section 5. The Side-
bar Management module wraps several key components, including the SHACL
and Target Selectors, the Navigation Bar, and the SHACL Uploader.

SHACL Selection Within this component, users can choose one or more con-
straints they wish to apply to given entities. Shapes can be searched for by
properties including rdfs:label, sh:targetClass, and sh:targetNode con-
structors. Experienced users have the option to write custom SPARQL queries

Sch́ımatos: a SHACL-based Web-Form Generator... 7

with which they can search for SHACL constraints. Users also have the option
to customise many of their selections, including the ‘severity’ of the constraints
they wish to apply and whether they wish to apply several constraints to a single
entity. There is also functionality to ‘automatically apply’ constraints where the
target class/entity/subjectsOf/objectsOf attributes of SHACL constraints
are used to determine whether the constraint applies to the entity a user is
targeting.

Target Selection Within this panel, users can search for entities that they wish
to enter into the Sch́ımatos form. Similarly to the SHACL Selection Component,
shapes can be selected using a custom SPARQL query or by querying for prop-
erties such as rdf:type and rdfs:label. This part of the GUI also displays the
datatype and object properties of the currently selected entity so that users can
verify that they have selected the correct IRI.

Navigation Bar Within the Navigation Bar, users may choose to navigate to,
and focus on different components of the form. This is primarily of use when
entering data about complex entities for which the form structure may be too
overwhelming to view in a single display.

4.2 Controller

Input Mappings All data entry in Sch́ımatos is validated against the shape
constraint used to generate the form. The current validation engine for indi-
vidual inputs is built upon the React Hook Forms package13. For validating
individual form fields, Sch́ımatos uses sh:PropertyShape constructors such as
sh:pattern and sh:minValue to validate entry of entities and literals. Each
sh:PropertyShape, such as that for a human’s given name, may have a datatype
or class (such as tp:name) with an associated set of constraints. If not defined
directly in the sh:PropertyShape, Sch́ımatos can suggest the datatype using
the rdfs:domain and rdfs:range of the predicate (such as wdt:P735). These
constraints can be defined in a shape and loaded automatically from a desig-
nated Type store. For this purpose, SHACL definitions of all pre-defined XSD
types are pre-loaded into the Storage Context. The controller does not update
the Form Context with values that fail the validation procedure and alerts users
to fix the entry. This means that when a completed form is submitted to the
model, no ‘invalid’ entries are submitted to the KG.

Context Management Sch́ımatos uses three ReactJS contexts14 as described
below, which control and manage the application’s state at any given time.

1. The Configuration Context defines user settings for interacting with the tool
such as the complexity of features available and the prefixes used within the

13 See https://react-hook-form.com/
14 See https://reactjs.org/docs/context.html

8 Wright et al.

form. In addition, the Configuration Context defines the KG, SHACL store
and Type store endpoints. If permitted by the user, this is also stored as a
browser cookie to maintain settings across sessions.

2. The Form Context captures the information to construct the form, including
a representation of the SHACL constraints currently in use. It additionally
stores data for all the entities and literals currently entered into the form,
the data of children nodes within the supported path length, and the display
settings for any form element15. When multiple shape constraints are applied
simultaneously, they are ‘merged’ within the Form Context by applying the
most strict set of constraints on each property.

3. The Storage Context has a local copy of triples from the KG model which
are relevant to the current form. This data can then be used to pre-fill the
form, provide suggestions for possible user input, and enable the display of
datatype and object properties. Additionally, the Storage Context contains
datatype constraints which are automatically applied to any property fields
that have ‘datatype’ information in the corresponding SHACL pattern.

5 Form Display Logic

The SHACL standard defines two sh:Shape classes which are mapped in Sch́ımatos
to the DOM as follows: sh:NodeShapes are mapped to form elements, and
sh:PropertyShapes are mapped to form fields that include HTML/JavaScript
validators and a label. The following paragraphs provide more detail on this
rendering logic.

Rendering simple shapes A sh:NodeShape (e.g. ex:humanWikidataShape) is a
set of sh:PropertyShapes (e.g. shapes for wdt:P1038 - relatives, or wdt:P21 -
gender) used to generate a form for a chosen focus node (e.g. wd:Q88056610
- Sergio José Rodŕıguez Méndez). When rendering a form, Sch́ımatos uses the
sh:order constructor of each sh:PropertyShape to determine the position in
which it is displayed whilst sh:PropertyShapes with the same sh:group con-
structor are grouped in a pane.

Each sh:PropertyShape is rendered as a set of one or more HTML inputs
that have the same validators, and the values of which follow the same property
path to the focus node. A single label is used for each set of inputs. If defined, it is
the value of the sh:name constructor. Otherwise, if the sh:path is a single predi-
cate of length 1 (for instance, wdt:P1038 rather than wdt:P22/wdt:P1038*) then
the rdfs:label of that predicate is displayed. If rdfs:label is undefined, the
property path is used as the label. Each set is displayed and validated uniquely
depending on the constraints specified in the shape. If the sh:nodeKind con-
straint is sh:IRI (e.g. as for wdt:P1038 - relatives, in Figure 1), then the input
must be a valid W3C IRI and the tool presents users with a customised IRI-field

15 see section 5

Sch́ımatos: a SHACL-based Web-Form Generator... 9

sh:NodeShape sh:PropertyShape

:b

ex:humanWikidataShape

aa

sh:path
wdt:P21

Sergio ... Méndez

Gender

sh:in

w
d
:
Q
6
5
8
1
0
9
7

w
d
:
Q
6
5
8
1
0
7
2

w
d
:
Q
1
0
9
7
6
3
0

w
d
:
Q
1
0
5
2
2
8
1

w
d
:
Q
2
2
4
9
5
0
3

w
d
:
Q
4
8
2
7
0

Male

Female

Intersex

MTF

FTM
Non-binary

(a) Displaying sh:in property constraint

sh:NodeShape sh:PropertyShape

:b

ex:humanWikidataShape

sh:alternativePath

aa

Sergio ... Méndez

sh:path

wdt:P1038

sh:oneOrMorePath

sh:alternativePath

w
d
t
:
P
2
2

w
d
t
:
P
2
5

w
d
t
:
P
3
3
7
3

w
d
t
:
P
2
6

relative

sibling

mother

father
spouse

ex:SergioSister

(b) Displaying complex property paths

sh:NodeShape sh:PropertyShape

:b

ex:humanWikidataShape

aa

sh:path

wdt:P19

Sergio ... Méndez

Place Of Birth

Canberra

Country

Australia

(place of birth)

:b

sh:property

sh:path

(country)

wdt:P17

(c) Displaying nested-shapes

sh:NodeShape sh:PropertyShape

:b
ex:hu...Shape

aa

sh:path

ex:parent

Sergio ... Méndez

Parent

ex:SergioSnr

Parent

ex:SnrSnr
sh:node

sh:property

(d) Displaying recursive shapes

Fig. 3: Rendering of different property constraints in a generated form

Fig. 4: Screenshot of the form generated by Sch́ımatos from the Human shape

10 Wright et al.

XML/XSD type HTML/ReactJS input type

anyURI | string | hexBinary text
decimal | double | float | gYear | duration number
gDay | gMonth drop-down
boolean checkbox
date date
dateTime datetime-local

Table 1: XSD/XML to HTML/ReactJS mapping

where they can use a drop-down input to select the correct namespace prefix be-
fore entering the remaining IRI. Users are also presented with suggested inputs,
such as known entities of the class, which they can select as the input.

If the sh:in constraint is present for a property (e.g. as for wdt:P21 - gen-
der) then the input value must lie within the set of values predefined in the
SHACL constraint (e.g. male, female, transgender). The tool displays this set as
an HTML drop-down list (cf. Figure 3a) from which a user can select the correct
value.

When the sh:pattern constraint is present (e.g. as for wdt:P569 - date of
birth), the input must satisfy a regular expression. The expression is then broken
into separate characters and capturing groups and the input is displayed as a
series of inputs for each variable group. For instance, the input for a date of
birth would be displayed as 3 separate numeric inputs with slashes in between
them. All remaining inputs with a specified datatype constraint are mapped
to standard HTML inputs as given in table 1. The number of inputs that are
displayed to the user in the form field is initially determined by the sh:minCount
constructor for the sh:PropertyShape. Users can add or remove such inputs so
long as they remain within the sh:minCount and sh:maxCount constraint for
a property with sh:severity of sh:Violation, but are by default unbounded
for other levels of severity. These inputs are equipped with a set of JavaScript
validators for each property constraint; the value is not saved into the form until
it passes the validation criteria.

Rendering property shapes with complex paths Complex sh:path constructors
in sh:PropertyShapes are displayed as a variable label for the set of inputs.
Rather than displaying the sh:name, rdfs:label or property path IRI as the
label, users are presented with a menu from which they can select the path
they wish to use to add values to a given property constraint. For instance, the
complex property path shape in Figure 3b shows the ex:relatives property of
the ex:humanWikidataShape. For the label, there is a drop-down where users
can select the option wdt:P1038 (for a generic relative) and another option to
create a custom path using the sibling, mother, father, and spouse properties.
For instance, one could enter information about their grandfather using the
path wdt:P22/wdt:P22 (father/father). Values will be entered into the graph
corresponding to the value of the drop-down label at the time of entry. This

Sch́ımatos: a SHACL-based Web-Form Generator... 11

means, a user could enter her grandfather’s name, and then change the path to
wdt:P22/wdt:P25 to enter information about her grandmother.

Rendering Nested Shapes Nested Shapes are rendered as nested form elements
within the DOM. To do this, Sch́ımatos first renders the form disregarding any
sh:node constructors or nested properties present within a sh:PropertyShape.
For each input generated by a given sh:PropertyShape, the nested sh:NodeShape

is applied, treating the input as the focus node for the new form element. In our
example, Sch́ımatos will first generate a form beginning at ex:humanWikidataShape
that has a form field for wdt:P19 (place of birth). Once the user inputs the IRI
denoting place of birth, it becomes the focus node of a nested sh:NodeShape

which is a form element containing a single form field for wdt:P17 (country). A
sample rendering of this form is given in Figure 3c.

Rendering Recursive Shapes The SHACL standard specifies that ‘validation with
recursive shapes is not defined in SHACL and is left to SHACL processor im-
plementations’ [12]. In Sch́ımatos, this is represented as a nested form structure
that responds dynamically to user entry. Recursively defined shapes cannot be
implemented in the same manner as nested shapes as doing so would cause a
non-terminating loop within the application. Consequently, Sch́ımatos loads and
stores recursively defined data in the Storage Context. In our example, Sch́ımatos
first loads the ex:humanWikidataShape and renders all form fields within the
form element. Since the sh:PropertyShape generating the form field wdt:P22

(father) contains a recursive reference to the ex:humanWikidataShape, the ren-
dering of this element terminates and a copy of ex:humanWikidataShape is saved
to the Storage Context. Once a user submits a value in the form field for wdt:P22
(e.g. wd:SergioSenior), or when the value is pre-filled using data from the KG,
Sch́ımatos validates the node wd:SergioSenior against the ex:humanWikidataShape.
If the validation passes then the form remains unchanged, otherwise, a new
ex:humanWikidataShape form element is rendered with wd:SergioSenior as
the focus node. The process repeats, as the form element for wd:SergioSenior

contains a wdt:P22 form field which references the ex:humanWikidataShape.
Users may enter the IRI of wd:Q88056610’s grandfather (ex:SnrSnr) in this
field (cf. Figure 3d). Users can terminate this process at any point by closing
any form element they do not wish to complete.

6 Execution Behavior

The execution behaviour of Sch́ımatos can be grouped into two processes, i.e.
a data entry process (cf. Figure 5), and a shape creation process (cf. Figure 6),
that may be executed in an interleaving manner. However, as the intended user
of each of these processes is typically distinct, i.e. domain experts that create
data and information architects that can change shape constraints, respectively,
this paper distinguishes these two processes in the following sections.

12 Wright et al.

6.1 Data Entry

Users may enter data about either a new or an existing entity. In both cases, a
user names the entity and selects the shape they wish to use for the process which
in turn generates a form for the user to fill in. If there is existing data relating
to the named entity, the form will be automatically initialised with information
retrieved from the KG. Figure 5 presents a UML sequence diagram for the case
where a user wishes to add new data about an existing entity wd:Q88056610 -
Sergio José Rodŕıguez Méndez. Figure 4 depicts a screen capture of this process.

SELECT DISTINCT ?shape

WHERE {

?shape ?p ?o

FILTER REGEX(?o, 'human', 'i')

}

MODELMODELCONTROLLERCONTROLLERVIEWVIEW

:Configuration

Context (CM)

:Configuration

Context (CM)

: __

(FormDisplay)

: __

(FormDisplay)

targets: {

 0: { value: 'Sergio' },

 children: [0,1,… num_props]

}

properties: {

 0: { value: undefined,

 property: { path: parent }

 },

 1: { value: undefined,

 property:

 { path: native_lang }

 }

}

:Jesse

[User]

:Jesse

[User]

: KG API

(Model)

: KG API

(Model)

return

searchBy("Sergio")

:Target

Selection (SM)

:Target

Selection (SM)

:SHACL

Selection (SM)

:SHACL

Selection (SM)

:Storage

Context (CM)

:Storage

Context (CM)

:Form

Context (CM)

:Form

Context (CM)

choose()

search("Sergio")

: SHACL_repo

API (Model)

: SHACL_repo

API (Model)

searchBy("Sergio")

SPARQL Query Builders

[parameters]

SPARQL Query Builders

[parameters]

SELECT DISTINCT ?s

WHERE {

?s ?p ?o

FILTER REGEX(str(?o), 'Sergio', 'i')

}

return: selected triplesreturn: options that contain "Sergio"
IRI_selection()

getAllTriples(subject_IRI)

{retrieves all object and datatype properties}

return selected triples
The displayed attributes

are used to confirm the IRI

selection.
addResults()

open() setUsage(SHACL_graph)

Default:

data_graph

search("human")

searchBy("human") searchBy("human")

return: selected shapes
return: shapes with label "human"

Selection of:

1) “human” shape(s) to use.

2) Severity levels to apply.

shapeSelection()

getSHACLstructure(shape_IRI)

{retrieves the SHACL constraint structure}

return: selected SHACL structure

addShapeToNodes()

display()

Displays the form using

correspondent mappings

getFormState()

return state

(pre-filled form)

getUnknownTargetAndPropsTriples()

return: apply of a SHACL constraint

applyShapesRecursively

[SHACLs]

applyShapesRecursively

[SHACLs]

formInteraction()

User inputs and submits

“Sergio Senior”
process("Sergio Senior")

■ Checks if “Sergio Senior“ has class attribute “human“

(<https://www.wikidata.org/entity/Q5>),

as defined by the SHACL constraint.

■ If no: automatically, inserts the triple.

■ Else: do nothing.

Default:

SHACL_graph

SELECT ?o

WHERE {

<https://www.wikidata.org/entity/Q88056610>

?p ?o }

Fig. 5: UML sequence diagram view of Sch́ımatos for data creation

To do so, a user would first navigate to the Target Selection panel within
the sidebar. There is a search bar within the panel where users can search by
any datatype (literal) constructor relating to an entity. Since the rdfs:label

constructor for the entity is “Sergio José Rodŕıguez Méndez”, the entity will
appear in the set of results when a user searches for “Sergio”. Once a user
selects an entity from the drop-down menu, it is entered into the empty field on
the screen. Next users can select which shape (form) they wish to apply to the
entity. To do this, they can first navigate to the SHACL Selection panel within
the sidebar, since the Human shape which is to be applied has an rdfs:label

“human shape for wikidata instances” (cf. Figure 1), it will be in the set of
results for the search term ‘human’. Once a user applies the shape to the entity,
a form will be generated via the procedure outlined in section 5. Once the form is

Sch́ımatos: a SHACL-based Web-Form Generator... 13

rendered, users can choose to add or remove repetitive form components as long
as it is allowed by the SHACL constraint underlying that form component. For
example, an individual can have between 0 and 2 living biological parents, so the
user may choose to add another field under parent and enter the names of Sergio’s
mother and Sergio’s father. Each user entry is subject to a validation process
(based on regular expression patterns, value constraints, etc. as discussed in
section 4.2). Users are not able to submit their data for this entry if the validation
process fails: for instance, if a user attempts to enter a date of birth, without
including the year. When this occurs, a popup will prompt the user to correct
the entry. Once the user has ‘completed’ the form, they can choose to perform
a ‘final submission’ which performs additional validations (including validating
certain relationships between nodes, and cardinality of elements). Users will be
guided to fix any errors if this validation process fails. If the validation process
passes, all changes will be submitted to the KG.

6.2 Shape Creation

Sch́ımatos provides the capacity for information architects to construct SHACL
shapes within a form building UI. Figure 6 presents the UML sequence dia-
gram for creating a new detailed researcher shape16. In this example, there is an
existing Human shape and a University professor shape defined for Wikidata
instances. These shapes contain many of the attributes that the user wishes to in-
clude in a new shape, say detailed researcher. The user can search for the Human
shape and the University professor shape before opting to apply both shapes si-
multaneously. The user has the option to apply all constraints, or only those with
a defined level of violation severity. A severity may be sh:Info, sh:Warning or
sh:Violation with an undefined severity defaulting to a sh:Violation. These
shapes will then be merged within the Form Context by the processes outlined
in section 4.2. This is displayed to the user as a single form which contains all
of the constructors and constraints from both shapes. The user may then man-
ually edit/create form fields using the form building tools. In this use case, the
user will add the wdt:P496 constructor (ORCID). The sh:maxCount constraint
along with the pattern of the datatype are used to validate that the user entry
follows the correct pattern for at most one ORCID. Once the user submits this
change, the Form Context is updated accordingly. When a user chooses to ‘save’
a shape back to the SHACL graph, the internal structures storing the shape in
the Form Context is first serialized to Turtle and then the data is submitted to
the SHACL triplestore over the SPARQL endpoint via an INSERT command.

7 Conclusion and Future Work

Sch́ımatos is the first interactive SHACL informed knowledge graph editor. It can
be used for knowledge graph completion by domain experts without expertise in

16 This example is described in further detail at https://github.com/schimatos/

schimatos.org

14 Wright et al.

SELECT DISTINCT ?shape

WHERE {

 ?shape ?p ?o

 FILTER REGEX(

 ?o, <label>, 'i')

}

*<label> = “human” |

 “university”

MODELMODELCONTROLLERCONTROLLERVIEWVIEW

:Configuration

Context (CM)

:Configuration

Context (CM)

: __

(FormDisplay)

: __

(FormDisplay)

targets: {

 0: { value: undefined },

 children: [0,1,… num_props]

}

properties: {

 0: { value: undefined,

 property: { ... }

 },

 1: { value: undefined,

 property: { ... }

 },

 ...,

 10: { value: undefined,

 property: { ... }

 }

}

:Jesse

[User]

:Jesse

[User]

:SHACL

Selection (SM)
:SHACL

Selection (SM)
:Storage

Context (CM)

:Storage

Context (CM)

:Form

Context (CM)

:Form

Context (CM)

: SHACL_repo

API (Model)

: SHACL_repo

API (Model)

SPARQL Query Builders

[parameters]

SPARQL Query Builders

[parameters]

open() setUsage(SHACL_graph)

search("human")
searchBy("human") searchBy("human")

return: selected shapes
return: shapes with label "human"

Selection of:

1) shapes to use, and

2) severity levels to apply.

Add to list of SHACLs to apply.

shapeSelection()

getSHACLstructure(shape_IRI)

{retrieves the SHACL constraint structure}

return: selected SHACL structure

addShapeToNodes()

display()

addPredicate()

Inputs of property wdt:P496 (ORCID

ID) as the path:

Path: wdt:P496

Severity: Violation

MaxCount: 1

Datatype: tp:ORCID

Label: ORCID

* The ORCID datatype has been

predefined in the type store with:

Datatype: xsd:string

Pattern: “^\d{4}-\d{4}-\

d{4}-(\d{3}X|\d{4})$”

Inserts the new SHACL

constraint into the

SHACL_graph using a

SPARQL INSERT command.

Default:

SHACL_graph

: __

(FormMenu)

: __

(FormMenu)

search("university") searchBy("university") searchBy("university")

return: selected shapes
return: shapes with label "university"shapeSelection()

targets: {

 0: { value: undefined },

 children: [0,1,… num_props]

}

properties: {

 ...,

 15: { value: undefined,

 property: {

 Path: “wdt:P496”,

 Severity: “Violation”,

 MaxCount: 1,

 Datatype: “tp:ORCID”,

 Label: “ORCID” }

 }

}

saveShape()saveShape()

User inputs the shape IRI as: ex:detailedResearcherShape.

The shape has the following constructors:

rdfs:label “Shape to create an instance of a university

lecturer or researcher with details about the individual”

sh:targetClass wd:Q901 # scientist

sh:targetSubjectsOf

 wdt:P496 # ORCID ID

 wdt:P0153 # ResearcherID

saveShape()

addShapeToNodes()

{ Path: “wdt:P5584”,

 Severity: “Violation”,

 MinCount: 0,

 NodeKind: “IRI”

 Label: “University” }

{ Path: “wdt:P22”,

 Severity: “Violation”,

 MinCount: 0,

 NodeKind: “IRI”

 Class: “wd:Q5”

 Label: “Father” }

{ Path: “wdt:P103”,

 Severity: “Violation”,

 MinCount: 0,

 NodeKind: “IRI”

 Label: “Native Language” }

Displays the form using

corresponding mappings

Fig. 6: UML Sequence view of Sch́ımatos for SHACL creation

RDF(S)/OWL as well as for the development of SHACL shapes by information
architects. This paper has shown how Sch́ımatos can dynamically transform
SHACL shapes to HTML data-entry forms with built-in data validation.

Sch́ımatos is available under the MIT license17 for download at http://

schimatos.org and for Web use at http://schimatos.github.io. The first
public release of the software is also available under the DOI https://doi.

org/10.5281/zenodo.3988748.

The authors expect that the software will be maintained in the long term by
the Australian Government Linked Data Working Group18 and the Open Source
community at large. We would like to invite the Wikidata project to gauge the
potential to use the tool in the continuous creation of this public knowledge
graph.

In future work, the authors have planned formal user trials in the Australian
Government. Currently, Sch́ımatos is being improved in the following ways: (1)
multi-user support; (2) a Model RESTful service that handles different graph
versions (with DELETE operations); (3) support of SHACL generation from
TBox axioms; and (4) RDF* support.

Sch́ımatos should be cited as follows:

17 See https://opensource.org/licenses/MIT
18 See http://linked.data.gov.au

Sch́ımatos: a SHACL-based Web-Form Generator... 15

Wright, J., Rodŕıguez Méndez, S.J., Haller, A., Taylor, K., Omran, P.G.: Sch́ımatos
- A SHACL-based Web-Form Generator (2020), DOI https://doi.org/10.

5281/zenodo.3988748.

References

1. Aguzzi, C., Antoniazzi, F., Roffia, L., Viola, F.: SPARQL 1.1 subscribe lan-
guage. Unofficial Draft 12 October, w3c (2018), http://mml.arces.unibo.it/TR/
sparql11-subscribe.html

2. Aguzzi, C., Antoniazzi, F., Roffia, L., Viola, F.: SPARQL event processing archi-
tecture (SEPA). Unofficial Draft, W3C (Oct 2018), http://mml.arces.unibo.it/
TR/sepa.html

3. Barbosa, A., Bittencourt, I.I., Siqueira, S.W., Silva, R.D., Calado, I.: The use of
software tools in linked data publication and consumption: A systematic literature
review. IJSWIS 13, 68–88 (2017)

4. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: a Semantic Wiki for knowl-
edge engineering. Applied Intelligence 35, 323–344 (2011)

5. Berners-Lee, T.: User interface ontology. Tech. rep., w3c (aug 2010), https://www.
w3.org/ns/ui

6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

7. Butt, A.S., Haller, A., Liu, S., Xie, L.: ActiveRaUL: A web form-based user inter-
face to create and maintain RDF data. In: Proceedings of the ISWC 2013 Posters
& Demonstrations Track. vol. 1035, pp. 117–120. CEUR-WS.org (2013)

8. Corlosquet, S., Delbru, R., Clark, T., Polleres, A., Decker, S.: Produce and con-
sume linked data with Drupal! In: Proceedings of the International Semantic Web
Conference (ISWC 2009). pp. 763–778. Springer-Verlag (2009)

9. Haase, P., Lewen, H., Studer, R., Tran, D.T., Erdmann, M., d‘Aquin, M., Motta,
E.: The NeOn ontology engineering toolkit. In: Proceedings of the WWW 2008
Developers Track (2008)

10. Haller, A.: Activeraul: A model-view-controller approach for semantic web ap-
plications. In: Proceedings of the International Conference on Service-Oriented
Computing and Applications (SOCA). pp. 1–8. IEEE (2010)

11. Haller, A., Groza, T., Rosenberg, F.: Interacting with linked data via semantically
annotated widgets. In: Proceedings of the Joint International Semantic Technology
Conference, JIST. LNCS, vol. 7185, pp. 300–317. Springer (2011)

12. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Rec-
ommendation, w3c (July 2017), https://www.w3.org/TR/shacl

13. Kuhn, T.: AceWiki: Collaborative Ontology Management in Controlled Natural
Language. In: Proceedings of the 3rd Semantic Wiki Workshop (SemWiki 2008),
in conjunction with ESWC 2008 (2008)

14. Liao, X., Zhao, Z.: Unsupervised approaches for textual semantic annotation, a
survey. ACM Comput. Surv. 52(4) (Aug 2019)

15. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale
knowledge graphs: Lessons and challenges. ACM Queue 17(2) (2019)

16. Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., Musen, M.: Creating
Semantic Web contents with Protege-2000. Intelligent Systems, IEEE 16(2), 60–71
(2001)

16 Wright et al.

17. Passant, A., Breslin, J.G., Decker, S.: Open, distributed and semantic microblog-
ging with SMOB. In: Proceedings of the 10th International Conference on Web
Engineering (ICWE 2010). pp. 494–497. Springer-Verlag (2010)

18. Population Reference Bureau: How many people have ever lived on earth? (Aug
2018), https://www.prb.org/howmanypeoplehaveeverlivedonearth/

19. Prud’hommeaux, E.: Play with ShEx-generated forms. https://github.com/

ericprud/shex-form (2020)
20. Prud’hommeaux, E., Boneva, I., Gayo, J.E.L., Kellogg, G.: Shape expressions lan-

guage 2.1. Final community group report 8 october 2019, W3C Community Group
(2019), http://shex.io/shex-semantics/

21. RDFShape: Parse and convert schema, http://rdfshape.herokuapp.com/

schemaConversions

22. Reenskaug, T.: The original MVC reports. Tech. rep., Dept. of Informatics, Uni-
versity of Oslo (February 2007), http://heim.ifi.uio.no/~trygver/2007/MVC_
Originals.pdf

23. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Recommen-
dation, w3c (feb 2015), https://www.w3.org/TR/ldp/

24. Stapleton, G., Howse, J., Taylor, K., Delaney, A., Burton, J., Chapman, P.: To-
wards diagrammatic ontology patterns. In: Workshop on Ontology and Seman-
tic Web Patterns (WOP 2013). vol. 1188. CEUR proceedings (October 2013),
http://ceur-ws.org/Vol-1188/paper_4.pdf

25. Thornton, K., Solbrig, H., Stupp, G.S., Labra Gayo, J.E., Mietchen, D.,
Prud’hommeaux, E., Waagmeester, A.: Using shape expressions (ShEx) to share
RDF data models and to guide curation with rigorous validation. In: The Semantic
Web. pp. 606–620. Springer, Cham (2019)

26. Tim Berners-Lee: Linked data shapes, forms and footprints. Tech. rep., w3c (De-
cember 2019), https://www.w3.org/DesignIssues/Footprints.html

27. United Nations: World population prospects 2019: Data booklet (2019), https:
//population.un.org/wpp/Publications/Files/WPP2019_DataBooklet.pdf, re-
trieved April 2020

28. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic wikipedia.
In: Proceedings of the 15th International Conference on World Wide Web. p.
585–594. WWW ’06, ACM, New York, NY, USA (2006)

29. Vrandeĉić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

30. Wikiproject schemas, https://www.wikidata.org/wiki/Wikidata:WikiProject_
Schemas

31. Wikidata: human (E10) (2020), https://www.wikidata.org/wiki/EntitySchema:
E10

32. Wikiproject source metadata, https://www.wikidata.org/wiki/Wikidata:

WikiProject_Source_MetaData

